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Abstract

Purpose – The purpose of this paper is to consider the unsteady natural convection flow of a
viscous incompressible fluid, which is induced by differential heating on the solid vertical boundary
of an open-ended rectangular cavity with the two horizontal surfaces which are permeable and
maintained at the temperature of ambient fluid. Attention is focused on how the flow and
heat transfer is affected by variations of the buoyancy force, as well as by the permeability of the
surfaces.
Design/methodology/approach – An upwind finite-difference method in conjunction with a
successive over-relaxation iteration technique is used to solve the governing boundary layer
equations. To do this, the first and second derivatives were approximated by central differences and
were used in the vorticity, energy and Poisson equations. To preserve the conservative property, the
finite-difference forms of the vorticity and energy equations were written in conservative form for the
convective terms.
Findings – Local rate of heat transfer from the heated surface increases owing to an increase in the
value of Ra. In the region near the bottom surface, the heat transfer from the left vertical surface
decreases, but that increases in the region near the upper surface. Due to blowing of fluid through the
permeable surfaces, the rate of heat transfer is higher than the situation where fluid is being
withdrawn. This difference was found to be higher in the case of larger value of Ra.
Research limitations/implications – The analysis is valid for unsteady, two-dimensional natural
convection flow of a viscous fluid filled in an open-ended rectangular enclosure. An extension to
three-dimensional flow case is left for future work.
Practical implications – The method is very useful to analyze solar receiver systems, fire research,
electronic cooling, brake housing of an aircraft and many environmental geothermal processes.
Originality/value – The results of this study may be of some interest to engineers interested in heat
transfer in ventilated rooms or enclosures.
Keywords Convection, Flow, Permeability, Surface properties of materials
Paper type Research paper
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Nomenclature

Cp specific heat at constant pressure
(J/kg K)

g gravitational acceleration (m/s)

H enclosure height (m)

L enclosure breadth (m)

Nu local Nusselt number

Nua average Nusselt number

P fluid pressure (Pa)

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

t time (s)
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T temperature (�C)

S bowing and withdrawal
parameter

U, V dimensionless velocity
components in X- and Y-direction

V0 transpiration velocity (m/s)

u, v velocity in x- and y-direction
(m/s)

x, y Cartesian coordinates (L)

X, Y dimensionless coordinates

� coefficient of thermal expansion of
fluid (K�1)

G dimensionless temperature

� effective dynamic viscosity (Pa/s)

� effective kinematic viscosity (�/�)

� fluid density at reference
temperature (Tc)

� dimensionless time

 dimensionless stream function

� dimensionless vorticity function

1. Introduction
In recent years, increasing attention has taken place among the researchers on the
buoyancy-driven flows of viscous incompressible fluids in open-ended enclosures
because of the various practical applications. Such applications include solar thermal
receiver systems, fire research, cooling of electronic equipment and energy
conservation in buildings. One should mention that the main characteristic of
buoyancy-driven flows and heat transfer in open-ended cavities is its basic geometry,
which reveals the interactions and the influence of the inner and outer regions of the
cavity on the flow and temperature fields.

Penot (1982) conducted a numerical study of two-dimensional (2D) natural
convection in an isothermal open square enclosure. The results of this study showed
that the flow unsteadiness arises for large values of Grashof number and that the flow
field approaching the open cavity depends on the far field boundary conditions. Other
Problems involving natural convection in open enclosures were studied by Doria (1974)
for predicting unsteady flows of multi-component gases with strong buoyancy effects
and by Jacobs et al. (1974, 1976) in modeling circulation above city streets and
geothermal reservoirs. Chen et al. (1985) and Serans and Kyriakides (1982) had also
conducted experimental studies by modeling the solar systems. Chan and Tien (1982)
performed a numerical steady-state study of laminar natural convection in a 2D square
open cavity with a heated vertical wall and two insulated horizontal walls. The results
of this study illustrated the effect of the open boundary on the basic flow patterns.
Later on, the same authors (Chan and Tien, 1985) investigated numerically laminar
steady-state natural convection in a 2D rectangular open cavity by imposing
approximate boundary conditions at the open side of the enclosure. Vafai and Ettefagh
(1990a, b) conducted a comprehensive study for investigating basic aspects and
physics of the flow field within the open-ended structures and the effect of extended
computational domain on flow and heat transfer inside the open-ended cavity and its
immediate surroundings. Vafai and Ettefagh (1990a, b) established that the extent of
the enlarged computational domain has a substantially larger effect than previously
reported by other investigators. Following Chan and Tien (1985), investigation of
natural convection flow in a square open cavity with one side heated and other two
adiabatic as well as heated has been performed by Angirasa et al. (1996, 2002) by
solving the vorticity transport and stream function formulation. In these problems, the
computations were carried out without considering an outer region by specifying
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appropriate set of boundary conditions at the window for temperature as proposed by
Chan and Tien (1985).

Recently, Bilgen and Oztop (2005), carried out a study on inclined partially open square
cavity, which is formed by adiabatic walls and a partial opening and also assuming the
surface of the wall inside the cavity facing the partial opening to be isothermal. On the
other hand, investigation on natural convection heat transfer in partially open inclined
square cavity with discrete heat source at the bottom surface was conducted by Müftüŏglu
and Bilgen (2008). In this investigation the authors determined optimum positions of
discrete heat source by maximizing the conductance and then studied heat transfer and
volume flow rate with discrete heat source at their optimum positions. Very recently, the
problem posed by Angirasa et al. (1996, 2002) the natural convection in an open-ended
cavity is simulated by Mohamad et al. (2009) using lattice Boltzmann method.

Here, also we are addressing an investigation on an unsteady natural convection flow
of a viscous incompressible fluid enclosed in an open-ended rectangular cavity, posed by
Angirasa et al. (1996, 2002). The vertical side opposite to the open end is maintained at a
uniform temperature which is higher than that of the ambient temperature. We further
have considered that the horizontal surfaces are permeable and maintained at the
temperature of the ambient fluid. So far the authors’ concern, this problem has not been
discussed in the literature. With this understanding, the resulting dimensionless
equations are simulated numerically using an upwind difference scheme together with
successive over-relaxation method. Results are obtained for different values of the
Rayleigh number, Ra, and Reynolds number, Re, that depend on the permeability of the
horizontal surfaces for fluid having Pr ¼ 0.1, and shown graphically in terms of
streamlines, velocity vector and the isotherms of temperature at the steady-state
situation. Numerical solutions are also presented in terms of local Nusselt number as well
as average Nusselt number at the vertical surface. Finally a time history of the flow as
well as the temperature distribution is displayed.

2. Mathematical formalisms
Consider the unsteady 2D flow of a viscous incompressible fluid in an open-ended cavity
kept at temperature, TC, which is same as that of the ambient fluid. The vertical wall
opposite to the open end is maintained at a uniform temperature TH. The horizontal
surfaces of the cavity are assumed to be permeable with temperature same as that of the
ambient fluid. The transpiration velocity of the fluid at the upper and lower surfaces is
considered to be uniform. The effects of viscous dissipation and radiation are neglected.
The variation of density with temperature follows the Boussinesq approximation. The
geometry and the flow configuration are shown in Figure 1.

Figure 1.
The flow configuration

and the coordinate system
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Under the above assumptions the equations governing the 2D flow of a viscous
incompressible fluid are as follows:
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where u and v are the x and y components of the velocity field, respectively, K is the
permeability of the porous medium, g is the acceleration due to gravity, �T is the
volumetric expansion coefficients for temperature and � is the thermal diffusivity.
Further, T is the temperature of the fluid flow and the time is t. In this study we have
neglected stratification, viscous dissipation and other additional effects such as local
thermal non-equilibrium.

Boundary conditions to be satisfied by the above equations are:

uðx; yÞ ¼ 0; vðx; yÞ ¼ 0; Tðx; yÞ ¼ 0 for 8t � 0

otherwise,

uð0; yÞ ¼ 0; vð0; yÞ ¼ 0; Tð0; yÞ ¼ TH

uðx; 0Þ ¼ uðx;HÞ ¼ 0; vðx; 0Þ ¼ V0; vðx;HÞ ¼ �V0; Tðx;HÞ ¼ TC
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Based on these reference quantities, the following dimensionless variables are
constructed:
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t
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By introducing the above dimensionless dependent and independent variables in the
governing equations the following equations are obtained:
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where,

� ¼ � @2
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� �
 ð9Þ

is the vorticity directed in the z-direction, and  is the stream function defined by:
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ð10Þ

In the above equations:

Ra ¼ g�TðT1 � T0ÞH 3
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; Re ¼ V 0H

�
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�
ð11Þ

are, respectively, the Rayleigh number due to thermal diffusion, the Reynolds number
due to permeability and the Prandtl number.

The boundary conditions are as follows:

 ðX ;YÞ ¼ 0; �ðX ;YÞ ¼ 0; GðX ;YÞ ¼ 0 at � ¼ 0

otherwise,
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In equation (12), S is 1 and –1 while fluid is being sucked or blown through the horizontal
permeable surfaces and A ¼ L/H measures the dimensionless length of the cavity.

Once we know the numerical values of the temperature � we may obtain the rate of
heat flux from each of the walls since the non-dimensional heat flux from any surface is
given by �(@T/@n), where n is the direction normal to the wall. For example, the non-
dimensional heat transfer rate in terms of local Nusselt number, Nu, from the left
vertical heated surface is given by:

Nu ¼ � @G

@X

� �
X¼0

ð13Þ

The corresponding value of the average Nusselt number, denoted by Nua, may be
calculated from the following relation:

Nua ¼ �
ð1

0

@G

@X
dY at X ¼ 0 ð14Þ
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3. Method of solution
An upwind finite-difference method, together with a successive over-relaxation (SOR)
iteration technique, has been employed to integrate model equations (7) and (10)
subject to the boundary conditions given in equation (12). To do this, the first and
second derivatives were approximated by central differences and were used in the
vorticity, energy and Poisson equations. To preserve the conservative property, the
finite-difference forms of the vorticity and energy equations were written in
conservative form for the convective terms. Values of the stream function at all grid
points were obtained with equation (9) via an SOR method. The values for the
relaxation parameters ! has been considered as:

! ¼ 8� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� a2
p� �

=a2 where a ¼ cos
	

m

� �
þ cos

	

n

� �
ð15Þ

In the above relation m and n represent the number of subintervals along X- and Y-
direction, respectively. The velocities at all grid points were determined with the
dimensionless form of equation (10) using updated values of the stream function.
Variations by less than 10�5 over all grid points for the stream function were adopted
as the convergence criterion.

A grid dependence study has been carried out, as done by Hossain and Wilson
(2004), Hossain and Rees (2003, 2005), and Hossain and Gorla (2006) for a thermally
driven cavity flow, for different values of the physical parameters, with meshes of
41 � 41, 51 � 51 and 61 � 61 points. It has been found that there are very small
differences in the maximum or minimum values of the stream function between above
sets of meshes. Here we have demonstrated the numerical values of j jmax in Table I
at mesh-points 175 � 51, 201 � 51, 225 � 51 and 201 � 61 while Re ¼ 102,
Ra ¼ 106 and S ¼ 1 at steady-state situation, from which one can see very small
difference between the values at different mesh-points. Hence we have chosen to use
201 � 61 mesh-points throughout the present computations with a time step of
5 � 10�6 until the dimensionless time reaches � ¼ 5.0. This value for � was found to
be sufficient to reach to the steady-state situation for the fluid of Pr ¼ 0.1.

In Figure 2 we demonstrate the values of the Nusselt number, Nua, along the heated
surface of the open-ended rectangular cavity, against Y. In this figure the graphs are for
Ra equal to 106, while Re ¼ 100 and S ¼ �1 for mesh-points 175 � 51, 201 � 51,
225 � 51 and 201 � 61. As before we may conclude that choice in mesh-points, either
225 � 51 or 201 � 61, is sufficient for the overall numerical simulations. Finally, it
should be mentioned that, using the present method we have revisited the work of
Angirasa et al. (2002) for the case where three solid surfaces were considered to be
heated. And some results are shown in Figure 3, which are found to agree well with
those obtained by these authors.

Most of the results obtained from the present investigation will be discussed in the
following section considering the fluid for which Pr ¼ 0.1.

Table I.
Numerical values of
j jmax at different
m � n while Re ¼ 102,
Ra ¼ 106 and S ¼ 1

m � n 175 � 51 201 � 51 225 � 51 201 � 61

j jmax 4.185 4.183 4.182 4.183
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4. Results and discussion
Investigation of unsteady, laminar natural convection flow of a viscous incompressible
fluid in an open-ended rectangular cavity having permeable horizontal surfaces has
been made. For numerical simulation of the dimensionless equations that govern the
flow, the finite-difference approach along with the SOR iteration technique has been
employed, considering the fact that both the horizontal surfaces are colder than the left
vertical one and having the temperature of the ambient fluid.

The non-dimensional controlling parameters are the Rayleigh number, Ra, the
Prandtl number, Pr and the Reynolds number, Re (that depends on the permeability of
the horizontal surfaces). Throughout the present investigation the length, A, of the
cavity has been chosen to be 4 and the fluid of Pr equal to 0.1.

Taking into consideration impermeable horizontal adiabatic surfaces, Chan and
Tien (1982) investigated a 2D open cavity with only the vertical side heated. They used
a primitive variable formulation, and the computational domain included the outer
region. In an interesting way, they (Chan and Tien, 1985) also have explored the
possibility of obtaining a set of boundary conditions for primitive variables at the
cavity window for computing within the domain of the cavity. The results indicated
that natural convection inside the cavities was not much influenced by the far field.
Very close to the present work, Angirasa et al. (2002) presented a numerical study of a
square open cavity with the one vertical side heated, solving for vorticity transport and
stream function. In this investigation the computations were performed without an
outer region by specifying an appropriate set of boundary conditions at the window.

Figure 3.
Streamlines at � ¼ 4,

Pr ¼ 0.7, Ra ¼105 for the
case when the three solid

surface are heated

Figure 2.
Numerical values of

Nusselt number, Nu, at
different mesh-points

while Re ¼ 102,
Ra ¼ 106 and S ¼ 1
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The solutions of the temperature and vorticity equations were obtained using the
alternating direction implicit (ADI) implicit scheme and the SOR method was employed
to obtain solution for stream function. They also studied transient solutions of tie flow
and heat transfer to check the validity of the boundary conditions as the solution
evolves. It is worth mentioning that using the present method we have revisited the
work of Angirasa et al. (2002), for the case where three solid surfaces were considered
to be heated. And some results are shown in Figure 3, which are found to agree well
with those obtained by these authors.

Transient velocity field, streamlines and isotherms
We, now, first show the time history through streamlines and velocity vectors taking
Ra ¼ 106 and Re ¼ 102 while fluid is being withdrawn through the permeable surface
in Figure 4. It can be seen from this figure that there develops vortex motion with low
intensity along the heated surface. The intensity and the size of the vorticity increase
with time and finally reach the steady state. In the present investigation it is seen that
the steady-state situation is reached at � ¼ 4.

Effect of Rayleigh number, Ra, on velocity field, streamlines and isotherms and
Nusselt number
Now we show the effect of different Rayleigh number, Ra, namely, 0.0, 104, 105 and 106

on the velocity vectors and the streamlines, as well as on the isotherms for withdrawal
and blowing of fluid through the permeable surface through Figures 5 and 6,
respectively. From Figure 5, in case of withdrawal of fluid, an increase in the value of
Ra destroys the symmetry in the flow within the cavity. At a higher value of the
Rayleigh number there develops vortex motion near the heated surface, which is
expected, since, in this case, domination of buoyancy force prevails (Ra > Re). From
the corresponding isotherms we see that the buoyancy force also enhances the
temperature of the fluid in the region near the upper surface of the cavity.

In Figure 6, displayed are the streamlines and the velocity vectors showing the effect of
increasing value of the Rayleigh number, Ra, at steady state when fluid is being blown
through the permeable surfaces. Corresponding isotherms are also shown in the right
column of this figure. From this figure we also see that, similar to the case of withdrawal
of fluid, an increase in the value of the Rayleigh number distorts the symmetry of the flow
and enhances the flow velocity. At higher value of Ra, there develops a vortex motion in
the upper half regime and also there is elongation of the vortex. Further we notice that the
intensity of the flow near the outlet of the cavity also increases owing to an increase in the

Figure 4.
Time history of velocity
vectors and streamlines
while fluid is being
sucked through the
permeable surface (S ¼ 1)
at Ra ¼ 106 and Re ¼ 102
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value of Ra. An increase in the buoyancy force causes an increase in the temperature
distribution from the heated surface (can be seen from the isotherms) and thus enhances
the velocity of the fluid particles. It can further be seen that there is an increase in both
momentum and thermal boundary layers due to an increase in the value of Ra. It is
obvious, since, when Ra >> Re, the buoyancy force will dominate the mass flux through
the surface. Finally, in the present physical condition, the flow remains stable until Ra
reaches a value of 1.75 � 106. Further numerical calculations show that this critical value
of Ra increases due to an increase in the value of the Reynolds number, Re (that depends
on the transpiration velocity) or at reduced cavity height.

Now we show the effect of increasing value of the Rayleigh number on the local
Nusselt number (or the rate of heat transfer) at the heated wall for the case when fluid
is being sucked as well as blown through the permeable surface in Figure 7 taking
Re ¼ 102. From this figure, it can be seen that the local heat transfer increases with an

Figure 5.
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increase in the value of Ra. We can further observe that, in the region near the bottom
surface, the heat transfer from the left vertical surface decreases and increases in the
region near the upper surface. Comparison between the results for S ¼ 1 (withdrawal
of fluid) and –1 (blowing of fluid) shows that due to blowing of fluid through the
permeable surface the rate of heat transfer is higher than the situation where fluid is
being withdrawn through the permeable surface. This difference is higher in case of
larger value of Ra.

In Figure 8, we have depicted the numerical values of the average Nusselt number
against � for different values of the Rayleigh number, Ra. From this figure we can see
that, for both the cases when fluid is being sucked or blown through the surfaces, the
average heat transfer decreases at Ra ¼ 104 and 105 and increases while Ra ¼ 106

when � < 0.2, which reaches the steady-state value. As in the case of local Nusselt
number, the value of the average Nusselt number is higher when fluid is being blown
through the permeable surfaces (i.e. when S ¼ �1).

Figure 6.
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Effect of Reynolds number, Re, on velocity field, streamlines and isotherms
and Nusselt number
Now we show the effect of surface mass flux that will increase the value of the
Reynolds number Re on the velocity and streamlines, at Ra ¼ 106, in the situation
where fluid is being sucked as well as blown through in Figure 9. The streamlines and
the velocity vectors presented in left column are those with suction of fluid. From this
figure, one can see that the cell that developed in the region at the left top corner of the
cavity is disappearing with the creasing value of Re, which is expected, since suction
phenomena will take the heated fluid particles which ultimately dominate the effect of
buoyancy force along the heated surface. Finally, at larger value of Re, the flow
variables become symmetric about the central line in the horizontal axis and there is no
instability. From the right column of this figure one can notice a similar flow
phenomenon when the fluid is blown through the permeable surfaces.

Finally, Figure 10 depicts the average Nusselt number for S ¼ 1.0 and –1 and
Ra ¼ 106 against � for different values of Re that shows the effect of increasing surface
mass flux. As Re increases, the value of the average Nusselt number increases for both
cases when fluid is being sucked as well as injected. Comparison between the black
broken curves with the solid dark grey curves shows that at larger value of Re, it is
seen that the average Nusselt number is considerably higher when fluid is being
sucked than that of blowing of fluid through the permeable surfaces.

Figure 7.
Numerical values of
Nusselt number, Nu,

against Y at the heated
surface for different
values of Ra when

S ¼ 1 and �1

Figure 8.
Numerical values of

average Nusselt number,
Nua, against Y at the

heated surface for
different values of

Ra when S ¼ 1 and �1
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Conclusions
In the present paper, investigation has been made on the unsteady natural convection
flow of viscous incompressible fluid filled in an open-ended rectangular enclosure. Two
permeable horizontal surfaces of the cavity are maintained at temperature same as that
of the ambient fluid considering the fact that the temperature of vertical solid surface is
higher than that of the horizontal surfaces. The governing equations for the flow are
simulated numerically by employing an upwind finite-difference method together with
an SOR technique. Results are obtained for values of the Rayleigh number, Ra, equal to
104, 105 and 106 whereas the Reynolds number, Re (that depends on the permeability of

Figure 10.
Numerical values of
average Nusselt number,
Nua, against � at different
values of Re while
Ra ¼ 106 and S ¼ 1, �1

Figure 9.
Effect of Reynolds
number (Re ¼ 102,
Re ¼ 103, Re ¼ 104) on
the streamlines and
velocity vectors
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the horizontal surfaces), ranges from 102 to 104 and the Prandtl number, Pr, is equal to
0.1, which is appropriate for liquid metal and semi-conductor melt.

The following conclusions may be drawn from the present investigations:

. At higher value of the Rayleigh number there develops a vortex motion near the
heated surface, for Ra > Re. Buoyancy force also enhances the temperature of
the fluid in the region near the upper surface of the cavity.

. Intensity of the flow near the outlet of the cavity increases owing to an increase
in the value of Ra.

. Local rate of heat transfer from the heated surface increases owing to an increase
in the value of Ra. In the region near the bottom surface, the heat transfer from
the left vertical surface decreases, but that increases in the region near the upper
surface. Due to blowing of fluid through the permeable surfaces, the rate of heat
transfer is higher than the situation where fluid is being withdrawn. This
difference was found to be higher in the case of larger value of Ra.

. Average Nusselt number is higher when fluid is being blown through the
permeable surfaces (i.e. when S ¼ �1).

. At larger value of Re, the flow variables become symmetric about the central line
in the horizontal axis and there is no instability. Similar phenomenon occurs
when the fluid is being blown through the permeable surfaces.
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